

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SEMESTER I EXAMINATION, 2016/2017 ACADEMIC SESSION

COURSE TITLE: ELECTRIC CIRCUIT THEORY

COURSE CODE: EEE 317

EXAMINATION DATE: 4TH APRIL, 2017

COURSE LECTURER: DR R. O. Alli-Oke

HOD's SIGNATURE

TIME ALLOWED: 2½ HRS

INSTRUCTIONS:

- 1. ANSWER QUESTION 1 AND ANY OTHER TWO QUESTIONS (TOTAL OF 3 QUESTIONS)
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE <u>NOT</u> ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.

a)

- Differentiate between networks and circuits? (3 marks) Explain briefly what you understand by passive sign convention for circuit elements. (3 marks)
- ii) Determine the absorbed power by each of the circuit elements shown in the figure 1 below. (4 marks)

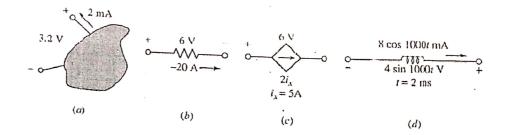


Figure 1: Circuit Elements

b) Find the relation between V_1 and V_2 that must hold so that I=1A.

(3 marks)

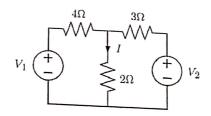


Figure 2: A 2-Loop Circuit

- c) The Parseval's theorem states that $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|$ where $X(\omega) = F_{\omega}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \ e^{-j\omega t} \ dt$ is the Fourier transform of the signal x(t). Find the energy in the signal $x(t) = e^{-at}u(t)$ and find the bandwidth W such that 95% of the energy is contained in frequencies below W.

 (5 marks)
- d) Determine the steady-state current i(t) shown in this circuit. Hint: use phasor-domain analysis (5 marks)

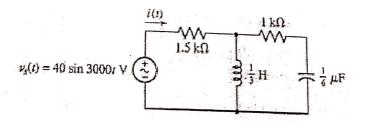


Figure 3: A Sinusoidal-Excited Circuit

e) Design an analog passive band-pass filter that has a Q-factor of 0.8 and a bandwidth of 20 kHz. Use only resistors-capacitors combination for your design and assume that the center frequency is the midpoint of the bandwidth.

(6 marks)

c) A 5 μF capacitor with an initial voltage of 4V is connected to a parallel combination of a 3 $k\Omega$ and a 6 $k\Omega$ resistor. Find the current i in the 6 $k\Omega$ resistor. (5 marks).

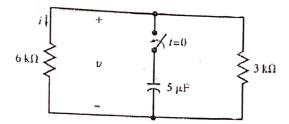


Figure 7: Source-Free RC Circuit

4)

a) Differentiate between Laplace–Domain circuits and Phasor–Domain circuits

(2 marks).

b) Use phasor-domain analysis on the circuit shown in the figure (b) to determine the sinusoidal steady-state currents l_1 , and l_2 . (5 marks)

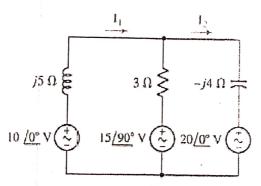


Figure 8: Phasor-Domain Analysis

- c) Consider the following circuit in figure 7. Assume the input is $V_i(t) = V_p \cos \omega t$.
 - i) Use phasor-approach to determine $V_o(t)$

(3 marks)

- ii) Let V_i and V_o represents phasors corresponding to input and output voltages respectively. Determine the frequency transfer function $H(j\omega)=\frac{V_o}{V_i}$. (3 marks)
- iii) Classify the kind of filter is the R-C network is? Use at least 3 categories of classification.

(3 marks)

iv) Determine 3dB cut-off frequency analytically or otherwise

(2 marks)

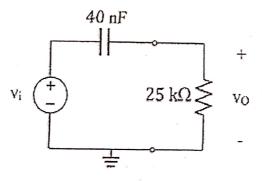


Figure 9: Filters - Phasor-Domain Analysis

a) State 3 electric circuit analysis techniques you know.

(3 marks) *

- b) Consider the following resistive circuit shown in figure 2.
 - i) Determine the current through the 10Ω resistor

(6 marks).

ii) Compute the power absorbed by the 10Ω resistor

(4 marks)

Hint:
$$\begin{bmatrix} -0.8 & 0.1 \\ 0.1 & -0.85 \end{bmatrix}^{-1} = \begin{bmatrix} -1.2687 & -0.1493 \\ -0.1493 & -1.1940 \end{bmatrix}$$

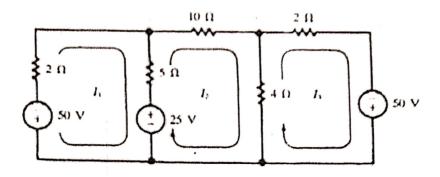


Figure 4: Resistive Circuit with DC sources.

c) Using repeated source transformation, determine the Norton equivalent of network A.

(5 marks)

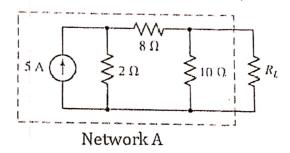


Figure 5: Source Transformation

3)

a) Differentiate between Thevenin's theorem and Norton's theorem.

(3 marks)

- b) Find the Thevenin's equivalent of the network shown in figure 6 as viewed from the following ports:
 - i) port x x'

(5 marks)

ii) port y - y'

(5 marks)

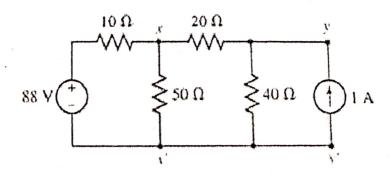


Figure 6: Multiple-Loop Circuit